On non-local nonlinear elliptic equations involving an eigenvalue problem
نویسندگان
چکیده
The existence and multiplicity of solutions for a class non-local elliptic boundary value problems with superlinear source functions are investigated in this paper. Using variational methods, we examine the changes arise solution behaviors as result effect. Comparisons made results here those problem absence term under same prescribed conditions to highlight effect non-locality on behaviors. Our demonstrate that complexity structures is significantly increased presence possibility ranging from no permissible positive three and, contrary obtained term, profiles also vary depending superlinearity functions.
منابع مشابه
An Eigenvalue Problem for Nonlinear Elliptic Partial Differential Equations
where X is a real number and/(i,x) is a real-valued function defined on R1 x G with /(0, x) s 0. If/(u,x) = u, the study of the boundary value problem (1) forms the foundation of the spectral analysis of A, a problem of great importance both in mathematics and its applications. If f(u,x) does not depend on « in a linear manner, one enters the relatively uncharted world of nonlinear functional a...
متن کاملON AN EIGENVALUE PROBLEM INVOLVING THE p(x)–LAPLACE OPERATOR PLUS A NON–LOCAL TERM
We study an eigenvalue problem involving variable exponent growth conditions and a non-local term, on a bounded domain Ω ⊂ RN . Using adequate variational techniques, mainly based on the mountain-pass theorem of A. Ambrosetti and P. H. Rabinowitz, we prove the existence of a continuous family of eigenvalues lying in a neighborhood at the right of the origin. Mathematics subject classification (...
متن کاملOn an Eigenvector-Dependent Nonlinear Eigenvalue Problem
We first provide existence and uniqueness conditions for the solvability of an algebraic eigenvalue problem with eigenvector nonlinearity. We then present a local and global convergence analysis for a self-consistent field (SCF) iteration for solving the problem. The well-known sin Θ theorem in the perturbation theory of Hermitian matrices plays a central role. The near-optimality of the local ...
متن کاملEigenvalue Problems for Degenerate Nonlinear Elliptic Equations in Anisotropic Media
We study nonlinear eigenvalue problems of the type −div(a(x)∇u) = g(λ,x,u) in RN , where a(x) is a degenerate nonnegative weight. We establish the existence of solutions and we obtain information on qualitative properties as multiplicity and location of solutions. Our approach is based on the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequal...
متن کاملAn Eigenvalue Problem for Elliptic Systems
By means of non-smooth critical point theory we prove existence of weak solutions for a general nonlinear elliptic eigenvalue problem under natural growth conditions .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas
سال: 2021
ISSN: ['1578-7303', '1579-1505']
DOI: https://doi.org/10.1007/s13398-021-01190-5